
REST - The Web Style

Koranteng Ofosu-Amaah

Lotus Software, IBM

REST - The Web Style

Buzzwords (Marketing)

Case Studies (Reflection)

Leaky Abstractions (Architecture)

Layer Stripping (Complexity)

Glue Layer People (Composition)

View Source Imperative (Comprehension)

Working the Web

Life on the Web

The Low End Theory (Strategy)

Why Specs Matter (Scaling)

Technical Arteriosclerosis (Hygiene)

Jokes (Relief after yesterday's events)

Spaghetti Westerns (B-Movies)

Bedtime Stories and Folktales (It's Friday)

Why this presentation?

10 years since the Web became Good
Enough (TM) - Historical Insight

10 years of Moore's Law in the Datacenter

In times of retrenchment, companies fall back
on things that "just work"

The Web Style works - Google/eBay/Amazon

The Web Style scales - businesses run on it

Technology Adoption and Systems Design

Leverage is key for success

We should aggresively leverage the web

Who am I?

10 years at Lotus

Currently working on Forms

Freelance Graphics - eSuite - K-station -
WebSphere Portal - ODC editors - Forms in
Workplace

Opinionated, "ecletic", "all over the place"

Verbose: writes "novel-length diatribes"

of late there's a blog - Koranteng's Toli
toli: n. 1. A juicy piece of news. 2. The latest word or gossip. 3.The
talk of the town, typically a salacious or risque tale of intrigue,
corruption or foolishness.

Remembers the day job (Hi there managers)

Self image: mild-mannered Clark Kent type

Do you exist if you're not "on the web"?
Are any of our products and services not web-native or
delivered via the web?

Other than the Green Terminals of course

Even those mainframe people are dying to "get on the
web"

What is the Web in WebSphere?

Everyone got the web religion circa 1995

How did you get on the web?

Why was the web so successful?

What does it mean to be "on the web"?

When was the last time you read about the web
architecture?

Word to the wise: Don't fight the web

First Questions

A quote

Oliver Hass, a 28 year-old chemist and graduate
student from Oldenberg, Germany, wrote me
recently about what the President's trip looked like

to him. In introducing himself, Hass commented on

"how necessary it can be for a chemist to
forget about molecules and think about
real problems."

We're all wrapped in our current black boxes

What are we trying to fix or to produce?

My Grandma (in village without electricity or
running water) suddenly wants to get "on the
web" (see my photos, see what I'm up to,
email me etc)

The Mom Factor in software = Opportunities

Communication (People)

Communities (We're social beasts)

Processes (pesky paperwork or "workflow")

Commerce $$$ (e-Business Things)

People, Places and Things (LDS / K-station)

People, Processes and Things (Workplace)

Big picture

The Web style is mostly about Resource
Identification and Hyperlinking

Pointers to some source material
Roy Fielding - Designing a new protocol for the
web

Sam Ruby - Attractive Nuisance

Adam Bosworth - Web of Data

Sam Ruby - Radical Simplification

Google for REST, Temple of REST, REST Wiki

http://del.icio.us/tag/rest

A REST Intervention
http://koranteng.blogspot.com/2005/03/rest-intervention.html

Some source material

Architecture of the World Wide Web

The web has an architecture

Really

Truly

Berners-Lee had the prototype

Contact with the real world turned it into the
product

The web was designed and architected

Roy Fielding - Apache, REST style

Netscape, Mosaic, Microsoft, Sun, Apple,
IBM etc.

The Usual Suspects plus some new Cats

Enterprise Application Integration

4 applications = 6 integrations

5 applications = 10 integrations

app1 app3 app4app2

app5

6 applications = 15 integrations
From Roy Fielding

REST

REST stands for REpresentational State
Transfer

Roy Fielding's dissertation
Architectural Styles and the Design of
Network-based Software Architectures

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

The meat is this chapter
Rest Architectural Style

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

REST is a style

An Architectural Style used to guide
definition and implementation of design and
architecture of the Web

modifications to HTTP and URI, HTML specs

implementations in Apache, libwww-perl, …

REST is the "best of the lessons learned in
developing the web".

REST = Design Patterns of the Web

REST - origins of the style

LCS = Layered Client Server

Uniform
Interface

Layered

System

LCS Code on
Demand

Cache

Client

Server
Virtual

Machine
Replicated

Repository

Stateless

REST From Roy Fielding, I can't draw to save my life

REST Process View

Layered Client-Server

Uniform Interface (like Pipe and Filter)

Stateless, Cacheable Communication

Optional Code-on-Demand

From Roy Fielding, I can't draw to save my life

Low entry-barrier
Hypermedia User Interface

Simple protocols for authoring and data transfer

Extensibility

Multiple organizational boundaries
Anarchic scalability

Heterogeneous platforms

Gradual and fragmented change (deployment)

Distributed Hypermedia System
Efficient for large data transfers

Sensitive to user-perceived latency

Capable of disconnected operation

High-level Web Requirements
(Fielding & Berners-Lee's motivation)

Elevator Pitch

REST is defined by four interface
constraints:

identification of resources

manipulation of resources through
representations

self-descriptive messages

hypermedia as the engine of application state

HTTP

URI

HTML

XML

HUHX like Dr Huxtable of The Cosby
Show

(Nice Sweaters)

Four Horsemen of the Web

Four Verbs of the HTTP Web

GET

POST

PUT

DELETE

Web Dav adds a few more verbs to HTTP

97 % of the web gets by with 4 verbs

Early Browsers got along with 2 verbs (GET, POST)

Four Verbs of the Database World

Create

Retrive

Update

Delete

CRUD

Four Layers of the Internet

TCP

IP

Datalink

Physical Layer (Ethernet / Wi-Fi 802.11b)

Design Principles of the Internet

End-to-End Argument
"functions placed at low levels of a system may
be redundant or of little value when compared
with the cost of providing them at that low
level."

Intelligence at the Endpoints

Stupid Network

Argument by Analogy to Distributed
Computing and hence the web's design

How did the Web Happen?

Adam Bosworth

Simple – Any “P” programmer can build apps.

Sloppy - add custom metadata or verbs

STANDARDS due to:
Single simple sloppy open wire format format

Runs on every platform, partly due to points 1 & 2.

Scale (Massive and Linear) due to:
DNS (partitioning)

Caching

Stateless

Coarse Grained interactions

That's it.

The Web Style (REST) is very simple
identification of resources

manipulation of resources through
representations

self-descriptive messages

hypermedia as the engine of application state

Live by it

Become irrelevant without it

Hypertext Transfer Protocol

The role of HTTP in Web Architecture
Extend uniform interface across the net

Minimize user-perceived latency

Enable layered processing

Enable caching

Enable extension and evolution

Already survived a decade of evolution

1991-93: HTTP/0.9 [Berners-Lee]

1993-97: HTTP/1.0 [RFC 1945]

1996-now: HTTP/1.1 [RFC 2068/2616]

Monty Python - Spanish
Inquisition Sketch

A REST Inquisition?

Nobody expects the RESTifarian Inquisition!

Our chief weapon is surprise...surprise and
tedium ...tedium and surprise.... our two
weapons are tedium and surprise...and ruthless
disregard for unpleasant facts.... Our three
weapons are tedium, surprise, and ruthless
disregard ...and an almost fanatical devotion to
Roy Fielding

Deadwood: Wild Wide Web

Criminals and Thugs (Cats)

IBM Technology Stack
Customers charitably describe as "complex"

Latest Buzzwords
Enterprise Service Bus (ESB)

Service Oriented Architecture (SOA)

WS-* (Web Services Nirvana or Tower of Babel?)

Buses or Titanic?
Remember the InfoBus?

What about Icebergs?

Busloads of Consultants?

Architectures of Control?

Get on the Buzzword Bus?

IBM Technolgy Stack (cont)

Frameworks, Middleware, More Frameworks

Politics and technology adoption

Survival of the Fittest?
At a certain point there were 8+ groups at IBM working
on a portal

Widgets and Frameworks: WCL, JWL, ODC, JSF,
Struts etc.

Currently in Forms Area: XForms, AUIML (Abstract
User Interface Markup), lots of others >8

Data Modeling: SDO, Hibernate (open source),
JService

WSRP, WSXR, BOIL, WSIS, WSPT, WSUX

Some of the above acronyms were invented

REST & the Dead WS spec Parrot

Mr. Praline: Never mind that, my lad. I wish to complain about
this specification what I purchased not half an hour ago from
this very boutique.

Owner: Oh yes, the, uh, the Big-Wizzdl...What's,uh...What's
wrong with it?

Mr. Praline: I'll tell you what's wrong with it, my lad. it's dead,
that's what's wrong with it! Owner: No, no, it's uh,...it's
RESTing.

Mr. Praline: Look, matey, I know a dead specification when I
see one, and I'm looking at one right now.

Owner: No no it's not dead, it's, he's RESTin'! Remarkable
spec, the Big-Wizzdl, idn'it, ay? Beautiful appendix!

Mr. Praline: The appendix don't enter into it. It's stone dead.

Owner: Nononono, no, no! it's RESTing!

REST & The Semantic Knight

HACKER: What?

SEMANTIC KNIGHT: None shall pass without using all sorts
of semantic meta-meta-meta-stuff that we will invent Real
Soon Now!

HACKER: I have no quarrel with you, good Sir Knight, but I
must get my work done on the Web. Stand aside!

SEMANTIC KNIGHT: None shall find anything on the Internet
without semantic metadata!

HACKER: So be it!

HACKER and SEMANTIC KNIGHT: Aaah!, hiyaah!, etc.

[HACKER chops the SEMANTIC KNIGHT's first argument off
by building efficent statistical/heuristic search engines]...

SEMANTIC KNIGHT: Just a flesh wound. [kick]

HACKER: Look, stop that.

SEMANTIC KNIGHT: You won't be able to get machine-machine services
without an

ontology to formally describe all the relationships! [kick]

HACKER: Right!

 [whop] [HACKER chops the SEMANTIC KNIGHT's third argument off by
building

SOAPy and RESTful services with only implicit semantic descriptions]

SEMANTIC KNIGHT: Right. I'll do you for that!

HACKER: You'll what?

SEMANTIC KNIGHT: Come here!

HACKER: What are you going to do, bleed on me?

SEMANTIC KNIGHT: I'm invincible!

HACKER: You're a looney.

REST & The Semantic Knight

My Buzzwords - PITTS: Naming an Aesthetic

Plain Old Distributed Computing (PODC)

Pragmatic Inside-out Technology Types
(PITTs)

Good Enoughers

View Sourcerers

SHow ME the Coders (SHMEC)

Radical Simplifiers

Technology Buzzword Demystifyers (TBDs)

Dark Matter of Technology (DMT)

My Buzzwords - Naming an Aesthetic

Plain Old Loyal Oppositionists (POLOs)

Layer Strippers

Skeptical Original Debunkers (SODs)

Technical Arteriosclerosis Terminators
(TATs)

Keep It Simple Sloppy (KISS)
Do the Simplest Thing that could possibly work

Sexy Mom Factor Software

Serendipity Manufacturers

Serendipity Manufacturers

Google wrote Google Maps

Craigslist - classifieds, housing (eBay but with a soul
and with more vibrant community)

1 weeks work by third party developer

Craigslist + Google maps
http://www.paulrademacher.com/housing/

the kind of magic that happens when you design for the
web

Neither Google nor Craigslist had anticipated that
service, no WSDL, just nice URI and Resource
Modeling

Glue Layer People

Life in the glue layer is about the outside-in. Pipes and filters are your
abstraction of choice, you might dream of Markov chains, the calculus of
design heuristics and those old standbys, the rules of thumb, as you
attempt to put order and infer structure where there was none.

Where Mel Brooks' 2000 year-old-man considered Saran Wrap the
greatest invention, I suspect for you it's duct tape, spackle and
wrenches (or spanners as my Brit-colonized ears would prefer). For you
it's all Perl, Python, Ruby, shell scripts, URIs, bookmarklets and the
like.

As an application designer my perspective has mostly been "inside out"
and I've been forever amazed at the serendipitous magic that you glue
layer people have been able to do with things I've built. My goal in life is to
find a way to encapsulate and codify the design patterns that would
make your jobs easier. I need to internalize that style as the best
practices in what I develop.

We need to help Glue Layer People, the make users passionate about
our products, their magic brings cold cash, Fistfuls of Dollars $$$

Case Study: WebSphere Portal

For the first 3 releases (2-3 years) of its
existence you couldn't bookmark a page in
WPS

Jetspeed legacy?

Not deemed important?

Why?

 What about the Web in WebSphere?

"What feature was it, you might ask? There was no way
to bookmark anything in WebSphere Portal."

WebSphere Portal internalizes REST (v 5.1)

No longer ignoring first plank of REST elevator pitch
(Resource Identification)

Now Customers can bookmark pages

Can copy paste link to send in email or instant message

Immediacy of Communication, Collaboration, Communities

create teamspace, send email to new members with link

Internally: hidden pages with portlets

Addressability helps expose functionality in many different
areas

Build Workplace on top of Portal
lightweight layering through URIs

3 Releases spent fighting the web!

Pain for us. Pain for Customers = $$$$$ lost

WebSphere Portal internalizes the REST Style

Programmability in the web sense was immediately enabled,
the portal became a composable platform and we were able
to layer the Lotus Workplace offering on top of it.

URIs give visibility to intermediaries and so things like
caching (where we had cool technologies like Dynacache)
were far more easily enabled.

Similarly for logging and profiling the portal, we could use the
same tools for processing logs as exist for regular web
servers like Apache.

We had new opportunities for pipelining and filter chains (to
do transcoding if needed).

We had more options for load balancing, we could decide to
deal with remote portlets through iframe invocation rather
than through immature and complex protocols like WSRP.
And so on...

Case Study: Google Web Accelerator

client-side proxy, a whopping cache

leverages Google's amazing server farms

Exposed pervasive HTTP Abuse in minutes

Developers have been misusing HTTP semantics e.g using
hyperlinks to delete and cause side effects

Idempotency: GET SHOULD NOT have side-effects

GWA pre-fetched links on pages (smart spider)

People Lost Data = Tears = Pain = $$$

I'm Sorry I can't kiss and make it better

Frameworks using HTTP should be better to mitigate these
risks

Still developers need to internalize the web architecture

Law of Leaky Abstractions

All Abstractions Leak - Joel Spolsky
case study: Buttons and Forms (WCL, JSF, ODC, Asp.net all leak)

Frameworks are good but can be dangerous in this case (each has
different ideas about forms and buttons)

ultimate abstraction is HTML form + button

Recall the End to End argument

Sometimes if you put too much into framework, you fight against the
underlying abstraction

Leaks - bugs - developer head-scratching - user head-scratching "not
what I expected" - $$$$ lost

Hence: We Need to plug leaks in our technology stack

Aggressive Layer Stripping

"Lets not give users enough rope for them to shoot themselves in
the foot"

- Mixed Metaphor Koranteng Toli circa 1998

Case Study: SDO

 What's happened to Service Data Objects (SD0)?
SDO is anagramatically in SOD territory (Skeptical
Original Debunkers).

Service Data Objects (SDO) was proposed
and accepted as a JSR in December 2003.
However, almost eighteen months later, there's
not even an expert community outside of IBM
and BEA, no draft of the spec is available.
What's happened to the SDO spec?

-TheServerSide.com last week

Case Study: SDO (cont)
The answer: we're working on it at IBM.

Right?

Some SOD replied:

The Spec Has Been Renamed

Rumor: The actual progress of this JSR has been appropriately renamed to "Stale
Data Object".

I just wonder how do I transfer my "business tier" objects / meta-objects to this SDO
and then from SDO to my presentation objects? Maybe it is time to create another
JSR named "Duplicating Data Object (DDO) specification" So you can transfer
from

EJB->DDO->SDO->DDO->POJO->JSF->HTML.

How can we do EJB->DDO? You guess! ;-)

Not picking on SDO but this is the perception about many of our offerings
(unnecessary layers, overly complex etc)

Complexity -> Consultants

No one really wants consultants

View Source Imperative

How did you learn HTTP?

Did you learn HTTP?

How did you learn HTML?
1. Reading the spec?

2. Formal education?

3. From a book?

4. View source?

Why Specs Matter

90% of everything is crap. That's Sturgeon's Law. Software is not
excluded from this principle. We live in a mass-market, low-bid,
first-to-market world.Our goal ultimately is to be less sucky than our
competitors.

A written spec is key to giving an organization the flexibility to grow.
Without it, adding new people to a project requires that the existing
engineers take time out to bring the new members up to speed. This is the
mechanism behind Brook's Law ("adding people to a late project only
makes it later").

But a good set of project documentation can temper the effects of Brook's
Law and provide some scalability...

So, if you don't write a spec, your name will be cursed in languages
unknown to you in far away countries, and also by kids in middle school
today when they try to figure out your code 10 years from now.

- Rob Weir (he's in the Dark Matter of Technology at Lotus/IBM

The Case of the "Prototype that shipped"

The "Framework from Hell"

The bundle of code even experienced developers
run away from

"We can't fix A because it would break X, Y & Z"

Clogged Arteries

Sound Familiar?

Hit close to home for anyone?

Technical Arteriosclerosis

(Definition)

Technical Arteriosclerosis
How? and Why?

"It is easier to write code than read code"
- Joel Spolsky

Developers are Busy

No sharing of code

Poorly documented code

Insane schedules

No consideration about maintenance costs

Development organization needs a spine

View Source Imperative
Developer inertia can be overcome

Need lots of good code and good samples

Need to spam Google and evangelize

Good samples should be first search result

Make time for specs upfront or design documents
after the fact

Early detection of clogged arteries

Refactor pragmatically

Clean Specs & Lightweight touch
(e.g. Atom vrs 8 variants of RSS - clogged arteries)

Technical Arteriosclerosis
How to fix?

Some Questions

Has everyone at IBM bought into the web and the
HUHXtable Sweater Quartet (HTTP, URI, HTML,
XML)?

Is the web not Good Enough (TM) for our purposes?

Have we embraced the web?

Have we internalized the web style? Or are we
fighting it?

Have Layer Strippers and Radical Simplifiers cast
their glances at our technology stack?

Is componentization a buzzword?

Documenting and sharing code vrs empire-building

IBM Software Group: The Baby
Eating Starts Here

The more I think about what service oriented architecture means the more
I realize loosely coupled has to go beyond lip service. Organizations
as much as architectures must be decoupled, so they can be remixed. Its
just so much horse manure to talk about SOA without a formal
commitment to loose coupling. That is, open documented interfaces
across granular components or services, with no funny business and
hidden calls. Interoperability is not just a marketing term. You can't have
SOA and attempt to drive lock in.

The more I think about the problems of SOA the more its clear the culture
of a company will be as important in delivering it, from a vendor
perspective, as any set of technical assets. Monoliths are not service
oriented. But, we can't break them down without freedom of
disassociation.

-- James Governor, Analyst at RedMonk

Listen to "The Guvnor"

More Quotes

"As an ostensible organization of inventors, our
choices are

1. use the rich assortment of tools out there to get
things done or

2. Spend years architecting and struggling with
cumbersome tools"

- Jonathan Feinberg

My comment:
Do we eat our own dogfood? Will customers eat it? Even

with busloads of consultants?

Efficiency of the web style

Jim Gray Distributed Computing Economics
relative inefficiency of many in the industry that haven't embraced the

web style.
"Megaservices like Yahoo!, Google, and Hotmail have relatively low
operations staff costs. These megaservices have discovered ways to
deliver content for less that the milli-dollar that advertising will fund.

For example, in 2002 Google had an operations staff of 25 who manage
d its two petabyte (2^15 bytes) database and 10,000 servers spread
across several sites.

Hotmail and Yahoo! cite similar numbers - small staffs manage ~300 TB
of storage and more than ten thousand servers."

Up until 2000, I believe the operational staff at Yahoo was 8 and
included the co-founder Jerry Yang.

Low End Theory

Google's strategy

Cheap hardware

Exploit Moore's Law

Software to implement redundancy
human fallibility

hardware reliability

Minting money as we speak

No layoffs that I know

Great album by the way

Innefficient IT structure at IBM

Tim Bray (Mr XML, now at Sun) had this to say

$46,213,000,000.00

I looked up the answer to the question: What is IBM's
consulting revenue? In 2004, IBM's gross revenue was
$96B, of which $46B was Global Services, i.e. consulting. I
see that basically as testimony to how our profession, the IT
profession, has failed our customers. Nothing against IBM; in
fact, as solution-providers go, my experience is that IBM GS
is pretty good. But if you see IBM as a microcosm of the
industry, it shouldn't cost $46B in consulting to deploy
$50B worth of technology. It's not going to be easy to get
there, and it's going to take a long time, but we just have to
focus on making things simpler.

Eating our babies

Are we prepared to change our corporate
structure and have profits come more from
well-designed and usable software as
opposed to consultantware?

Are we prepared to eat our babies and make
products that have much lower operational
costs?

I suggest that fully embracing the Web Style
is a step in the right direction.

ARESTed Development?

Resource Modeling
Every important resource should be identified

Use the right verb
Don't abuse HTTP

Your users will hate you if you do

Life is easier using the web style: leverage

Respect browser conventions
Bookmark

Back button

Refresh

Layer Stripping & Radical Simplification

You're Under ArREST

Miles Davis Soundtrack

My Jaundiced Prose

A REST Intervention

Pitts: Naming an Aesthetic

Get on the Bus

The Unloved HTML Button and Other Folktales

People, Processes and Things

On Bleach, Entertainments, Forms, Atom, Kiss and
Sexy MFs

On Gmail and DHTML Architecture Again

On Rich Web Apps, Alphablox and Oddpost

Deadwood and the Web Application Leap

http://koranteng.blogspot.com/

The Unloved HTML Button and
Other Folktales

 A long, long time ago in a far, far-away land,
there lived an HTML Button.

It lived happily with its parents, Mr HTML and
Mrs Form, and its siblings: the older brother
Text Entry Box and younger sisters,
Drop-down List and Radio Button. As a family,
they didn't look like much, but they got on with
things.

The Unloved HTML Button and
Other Folktales

Indeed some would say that they had been
second thoughts since grand-parents,
Netscape, Microsoft, Apache and
Berners-Lee, preferred to fawn and
monopolistically squabble over cousins,
Blink and Marquee Tag, the mobile duo,
Java Applet and ActiveX, and the gruesome
but quietly efficient twins, CSS and
JavaScript. Let's not forget the ugly outlier,
the Behaviour, and that perennial favourite
of old Sir Tim, Semantic Purity.

The Unloved HTML Button and
Other Folktales

Still those pragmatic matchmakers, Fielding
and Andreesson got together, sacrificed a
few goats on the altar of sloppy expediency
and dotcom hubris respectively and got the
marriage together. The good Reverend
HTTP was the officiating priest. Thus they
called for a great many festivities and plenty
palm wine and Schnapps was consumed by
the merry populace. Yahoo! and Google,
they ululated as they devoured the fatted
Browser calf.

